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Solvable kinetic Gaussian model in an external field
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In this paper, the single-spin transition dynamics is used to investigate the kinetic Gaussian model in a
periodic external field. We first derive the fundamental dynamic equations, and then treat an isotropic
d-dimensional hypercubic lattice Gaussian spin system with Fourier’s transformation method. We obtain
exactly the local magnetization and the equal-time pair-correlation function. The critical characteristics of the
dynamical relaxationtq , the complex susceptibilityx(v,q), and the dynamical response are discussed. The
results show that the time evolution of the dynamical quantities and the dynamical responses of the system
strongly depend on the frequency and the wave vector of the external field.

PACS number~s!: 64.60.Ht, 75.10.Hk
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I. INTRODUCTION

The purpose of this work is to investigate the dynami
behavior of a cooperative spin system, particularly, the
namical critical behavior. It is well known that a gre
progress in the understanding of critical dynamics has b
made, since Glauber@1# and Kawasaki@2# completed their
pioneering work on the time-dependent Ising model. In
past two decades much research has been devoted to a
understanding of dynamical behavior of various systems,
many theoretical methods have been applied and develo
@3–19#. Among these studies, the main attention has b
focused on the discrete spin systems, such as the Ising m
and the Potts model, and a little on the continuous symm
O(n) spin systems. Nevertheless, as far as our knowle
goes, only a few analytical results were presented. In
present work and the previous paper@20#, we are focusing on
obtaining the exact analytical results. This is our main mo
vation.

The Gaussian model is a variation of the Ising model. I
a uniaxial continuous spin model that shows different sta
critical behavior from the Ising model. Although its stat
critical properties have been investigated clearly, little att
tion has been paid to dynamical critical behavior. This is a
the reason we study the kinetic Gaussian model. Within
framework of Glauber dynamics in our previous paper@20#,
we have obtained dynamical critical exponentz51/n52 at
the critical pointKc5b/2d based on rigorous analytical der
vation.

To our knowledge, only the kinetic Ising model wit
time-dependent external field has been investigated in d
@21,22#. The present work is attempting to investigate furth
the dynamic behavior of the kinetic Gaussian model w
time-dependent external field. This paper is organized as
lows: In Sec. II, we first summarize the basic theory of t
single-spin transition critical dynamics, and then derive
fundamental equations of the kinetic Gaussian model i
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periodic external field. In Sec. III, an isotropicd-dimensional
hypercubic lattice Gaussian spin model is treated by Fo
er’s transformation. We exactly obtain the local magneti
tion and the equal-time spin-pair-correlation function. T
critical characteristics of the dynamical relaxationtq , the
complex susceptibilityx(v,q), and the dynamical respons
of the system to the time-dependent external field are inv
tigated. Finally, we end up the paper with concluding
marks in Sec. IV.

II. FUNDAMENTAL EQUATIONS

A. Basic theory of the single-spin transition critical dynamics

A single-spin transition critical dynamics based on Glau
er’s theory @1#, applying to both discrete-spin an
continuous-spin systems, was presented in our previous
per @20#. For the sake of application here we only give
summary.

Spins system with Hamiltonian,H($s i%), wheres i is the
spin of sitei and can take discrete values or continuous v
ues, interacts with a large heat bath with temperatureT. The
heat bath gives rise to spontaneous transition of spins
exchange of the energy. The probability of transition of t
i th spin per unit time from one values i to another possible
valueŝ i is denoted byWi(s i→ŝ i). Under the assumption o
single-spin transition, the probability distribution functio
P($s i%,t) of the system, being in the configuratio
(s1 ,s2 ,•••,sN) at time t, is governed by the master equ
tion

d

dt
P~$s j%,t !5(

i
(
ŝ i

@2Wi~s i→ŝ i !P~$s j%,t !

1Wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !#, ~1!

where the spin transition probability satisfies the followi
restrictive conditions:

~1! Ergodicity:

;s j ,ŝ j : Wj~s j→ŝ j !Þ0; ~2!
210 ©2000 The American Physical Society
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~2! Positivity:

;s j ,ŝ j : Wj~s j→ŝ j !>0; ~3!

~3! Normalization:

;s j : (
ŝ j

Wj~s j→ŝ j !51; ~4!

~4! Detailed balance:

;s j ,ŝ j :
Wj~s j→ŝ j !

Wj~ ŝ j→s j !
5

Peq~s1 , . . . ,ŝ j , . . . ,sN!

Peq~s1 , . . . ,s j , . . . ,sN!
,

~5!

in which

Peq~$s%!5
1

Z
exp@2bH~$s%!#, Z5(

$s%
exp@2bH~$s%!#,

~6!

where Peq is the equilibrium Boltzmann distribution func
tion, Z the partition function andH($s%) the Hamiltonian of
the system.

By use of both the master Eq.~1! and the normalized
condition ~4!, the time-evolving equations of the local ma
netization and the equal-time spin-pair-correlation funct
can be expressed as, respectively

d

dt
^sk~ t !&52^sk~ t !&1(

$s j %
S (

ŝk

ŝkWk~sk→ŝk!D
3P~$s j%,t !, ~7!

d

dt
^sk~ t !s l~ t !&522^sk~ t !s l~ t !&1(

$s j %
Fsk~ t !

3S (
ŝ l

ŝ lWl~s l→ŝ l !D 1s l~ t !

3S (
ŝk

ŝkWk~sk→ŝk!D GP~$s j%,t !, ~8!

where

^sk~ t !&5(
$s l %

sk~ t !P~$s l%,t !, ~9!

^sk~ t !s l~ t !&5(
$s l %

sk~ t !s l~ t !P~$s l%,t !. ~10!

Although the evolution starts with a certain initial state
t50, the system must be relaxed toward the final object
which is an equilibrium state characterized byPeq
5(1/Z)exp@2bH($s%)# in the absence of time-depende
external field, via interaction with heat bath. In addition, it
usually considered that the transition probabilities of the
dividual spins depend merely on the momentary values
the neighboring spins as well as the influence of the h
bath. So, even if the transition probability cannot be deriv
exactly by means of microscope, the following form:
n

t
,

-
f

at
d

Wi~s i→ŝ i !5
1

Qi
expF2bHi S ŝ i ,(̂

i j &
s j D G , ~11!

is well chosen, whereQi is the coefficient determined by th
normalized condition~4!. Equation~11! means that the tran
sition probability froms j to ŝ j only depends on the hea
Boltzmann factor of the neighboring spins. If the system is
a periodic low-frequency external field, Eq.~11! is still a
possible choice.

B. The model and the fundamental equations

To study further the dynamical behavior of the Gauss
spins system near the critical point, we put the system i
periodic low-frequency external field which may be regard
as an electromagnetic wave@22#. The reduced Hamiltonian
of the system under consideration is

2bH5(
^ i , j &

Ki j s is j1(
i

hi~ t !s i , ~12!

where

b5
1

kbT
, Ki j 5

Ji j

kbT
, hi~ t !5

Hi~ t !

kbT
5

H0

kbT
exp~ ivt2 iqxi !,

~13!

the first sum goes over all nearest-neighbor pairs of lat
and the second over all sites. Unlike Ising spin model,
Gaussian model have two extensions@23#: first, the spin can
take any real value in the range of (2`,1`); second, to
prevent all spins from tending to infinity, the probability o
finding a given spin betweens i ands i1ds i is assumed to
be the Gaussian-type distribution

f ~s i !ds i5A b

2p
expF2

b

2
s i

2Gds i , ~14!

whereb is a distribution constant independent of tempe
ture.

In terms of those mentioned above, we can derive
fundamental equations of the kinetic Gaussian model in
external field. Following Eq.~11!, we choose the spin
transition probability as

Wi~s i→ŝ i !5
1

Qi
expF(

w
Ki ,i 1wŝ is i 1w1hi ŝ i G

5
1

Qi
exp@Ei ŝ i #, ~15!

where

Ei5(
w

Ki ,i 1ws i 1w1hi , ~16!

and(w means the summation over nearest neighbors. As
spin variable takes continuous values, the summation
spin turns into the integration

(
s

→E
2`

`

f ~s!ds, ~17!
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then the normalized factorQi can be determined as

Qi5(
ŝ i

exp~Ei ŝ i !5E exp~Ei ŝ i ! f ~ ŝ i !dŝ i5expS Ei
2

2bD ,

~18!

and another useful combination formula can also be writ
as

(
ŝ i

ŝ iWi~s i→ŝ i !5E ŝ iWi~s i→ŝ i ! f ~ ŝ i !dŝ i5Ei /b.

~19!

Substituting Eq.~19! into the time-evolving Eqs.~7!,~8!, one
gets

d

dt
^s i~ t !&52^s i~ t !&1

1

b (
w

Ki ,i 1w^s i 1w~ t !&1
1

b
hi~ t !,

~20!

d

dt
^s i~ t !s j~ t !&522^s i~ t !s j~ t !&

1
1

b (
w

@K j , j 1w^s i~ t !s j 1w~ t !&

1Ki ,i 1w^s i 1w~ t !s j~ t !&] 1
1

b
@hi~ t !

3^s j~ t !&1hj~ t !^s i~ t !&#. ~21!

Equations~20! and~21! are the fundamental equations of th
kinetic Gaussian model in the external field.

III. EXACT SOLUTION

For a d-dimensional isotropic hypercubic lattice, the d
namic equations of the local magnetization~20! and the spin-
pair-correlation function~21! can be rewritten as

d

dt
^s i~ t !&52^s i~ t !&1

1

b (
l

K~r i2r l!^s l~ t !&

1
bH0

b
eivt2 iq•r i, ~22!

d

dt
^s i~ t !s j~ t !&522^s i~ t !s j~ t !&1

1

b F(
l

K~r i2r l!

3^s l~ t !s j~ t !&1(
l

K~r l2r j !

3^s i~ t !s l~ t !&G1
bH0

b
@^s i~ t !&eivt2 iq•r j

1^s j~ t !&eivt2 iq•r i#, ~23!

where

q5~q1,q2 , . . . ,qd!, r5~x1 ,x2 , . . . ,xd!,

i5~ i 1 ,i 2 , . . . ,i d…, j5~ j 1 , j 2 , . . . ,j d…, . . . , ~24!
n

and

K~r i2r j !5H K, nearest-neighbor-pair,

0, others.
~25!

Introducing Fourier’s transformation

^M ~q8,t !&5(
i

^s i~ t !&eiq8.r i, ~26!

^G~q8,q9,t !&5(
k,l

^sk~ t !s l~ t !&eiq8.rk1 iq9•r l, ~27!

which satisfy

1

N (
l

ei (q2q8).r l5dq,q8 , ~28!

1

N (
q

eiq•(r l2rk)5d l,k , ~29!

we have

d

dt
^M ~q8,t !&1F12

1

b
K~q8!G^M ~q8,t !&5

NH0b

b
dq,q8e

ivt,

~30!

d

dt
^G~q8,q9,t !&1F S 12

1

b
K~q8! D1S 12

1

b
K~q9! D G

3^G~q8,q9,t !&5
NH0b

b
@^M ~q8,t !&dq,q9

1^M ~q9,t !&dq,q8#e
ivt, ~31!

where

K(q…5(
i

K~r i2r j !e
iq–(r i2r j)

5K(
i 51

d

~eiqia1e2 iqia!52K(
i 51

d

cos~qia!, ~32!

K~0!52Kd, ~33!

and a is the lattice constant,qi is the i th component of the
wave vectorq, andd is the spatial dimensionality.

First we solve Eq.~30!. Obviously, it is a first-order linear
inhomogeneous differential equation with the canonical fo

dy~ t !

dt
1P~ t !y~ t !5Q~ t !,

and its general solution is

y~ t !5
1

m~ t ! Fm~ t0!y~ t0!1E
t0

t

m~j!Q~j!djG ,
where
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m~ t !5expF E P~ t !dtG .
Applying it to Eq. ~30!, one can get the following exac
solution:

^M ~q8,t !&5expS 2
t

tq8
D F ^M ~q8,0!&

1
NH0b

b
dq,q8E

0

t

expS j

tq8

1 ivj D djG
5@^M ~q8,0!&2H0x~v,q8!dq,q8#expS 2

t

tq8
D

1H0x~v,q8!dq,q8e
ivt, ~34!

where
tq85
1

12~1/b!K~q8!
5

1

12~2K/b!(
i 51

d

cos~qi8a!

~35!

and

x~v,q8!5
Nb

b
•

1

12~2K/b!(
i 51

d

cos~qi8a!1 iv

~36!

are the wave-number-dependent relaxation time and
frequency- and wave-number-dependent complex susc
bility, respectively.

From expression~35! we can see thattq8 is finite for q8
Þ0 as the temperature approaches the critical pointTc (Kc
5J/kbTc5b/2d), while it becomes to infinity forq850.

Substituting the solution~34! of the local magnetization
into Eq. ~31!, the time evolution equation of the spin-pai
correlation can be rewritten as
d

dt
^G~q8,q9,t !&1F S 12

1

b
K(q8…D1S 12

1

b
K(q9…D G^G~q8,q9,t !&

5
NH0b

b
@^M ~q8,0!&2H0x~v,q8!dq,q8#dq,q9expS 2

t

tq8

1 ivt D 1
NH0b

b
@^M ~q9,0!&

2H0x~v,q9!dq,q9#dq,q8expS 2
t

tq9

1 ivt D 1
NH0b

b
@H0x~v,q8!1H0x~v,q9!#dq,q8dq,q9e

2ivt. ~37!

Equation~37! is also a first-order linear inhomogeneous differential equation. One can give its general solution

^G~q8,q9,t !&5expS 2
t

tq8

2
t

tq9
D H ^G~q8,q9,0!&1

NH0b

b
@^M ~q8,0!&2H0x~v,q8!dq,q8#dq,q9E

0

t

expS j

tq9

1 ivj D dj

1
NH0b

b
@^M ~q9,0!&2H0x~v,q9!dq,q9#dq,q8E

0

t

expS j

tq8

1 ivj D dj1
NH0b

b
@H0x~v,q8!

1H0x~v,q9!#dq,q8dq,q93E
0

t

expS j

tq8

1
j

tq9

12ivj D djJ
5@^G~q8,q9,0!&2^M ~q8,0!&H0x~v,q9!dq,q92^M ~q9,0!&H0x~v,q8!dq,q8

1H0
2x~v,q8!x~v,q9!dq,q8dq,q9#expS 2

t

tq8

2
t

tq9
D 1@^M ~q8,0!&2H0x~v,q8!dq,q8#H0x~v,q9!dq,q9

3expS 2
t

tq8

1 ivt D 1@^M ~q9,0!&2H0x~v,q9!dq,q9#H0x~v,q8!dq,q8expS 2
t

tq9

1 ivt D
1H0

2x~v,q8!x~v,q9!dq,q8dq,q9e
2ivt. ~38!

To make the solution an explicit one, we note that the factor exp(2t/tq) can rewritten as

expS 2
t

tq
D5expF2S 12

2K

b (
i 51

d

cos~qia!D tG5e2t)
i 51

d

expS 2K

b
t
eiqia1e2 iqia

2 D
in which
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expS 2K

b
t
eiqia1e2 iqia

2 D
is just the generating function for the first-kind of imaginary argument Bessel function

expF x

2
~l1l21!G5 (

a52`

`

laI a~x!, ~39!

whereI a(x) is the first kind of imaginary argument Bessel function. Hence

expS 2
t

tq
D5e2t)

i 51

d

(
ni52`

`

~eiqia!ni I niS 2K

b
t D5e2t)

i 51

d

(
ni52`

`

eiqixniI niS 2K

b
t D5e2t(

n
eiq•rnI n1S 2K

b
t D •••I ndS 2K

b
t D

~40!

for convenience, where the summations forn1, . . . ,nd from 2` to ` are denoted by(n . Then Eqs.~34! and ~38! can be
rewritten as

^M ~q8,t !&5@^M ~q8,0!&2H0x~v,q8!dq,q8#3e2t(
n

eiq•rnI n
1
S 2K

b
t D •••I n

d
S 2K

b
t D1H0x~v,q8!dq,q8e

ivt, ~41!

^G~q8,q9,t !&5e22t@^G~q8,q9,0!&2^M ~q8,0!&H0x~v,q9!dq,q92^M ~q9,0!&H0x~v,q8!dq,q8

1H0
2x~v,q8!x~v,q9!dq,q8dq,q9#3(

n,m
eiq8•rn1 iq9•rmI n

1
S 2K

b
t D I m

1
S 2K

b
t D •••I n

d
S 2K

b
t D I m

d
S 2K

b
t D

1e2teivt@^M ~q8,0!&2H0x~v,q8!dq,q8#H0x~v,q9!dq,q93(
n

eiq8•rnI n
1
S 2K

b
t D •••I n

d
S 2K

b
t D

1e2teivt@^M ~q9,0!&2H0x~v,q9!dq,q9#H0x~v,q8!dq,q83(
n

eiq9•rnI n
1
S 2K

b
t D •••I n

d
S 2K

b
t D

1H0
2x~v,q8!x~v,q9!dq,q8dq,q9e

2ivt. ~42!

Taking the inverse Fourier transformation

^sk~ t !&5
1

N (
q8

^M ~q8,t !&e2 iq8–rk, ~43!

^sk~ t !s l~ t !&5
1

N2 (
q8,q9

^G~q8,q9,t !&e2 iq8–rk2 iq9–r l, ~44!

and using the following relation:

1

N (
q

eiq•(r i2r j)5d i,j , ~45!

the local magnetization and the pair correlation of thed-dimensional hypercubic system can be written as

^sk~ t !&5e2t(
n

H ^sn~0!&I k12n1S 2K

b
t D •••I kd2ndS 2K

b
t D2

1

N
H0x~v,q!eiq•rnI k11n1S 2K

b
t D •••I kd1ndS 2K

b
t D J

1
1

N
H0x~v,q!eivt2 iq•rk, ~46!

and
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^sk~ t !s l~ t !&5e22t(
n,m

^sn~0!sm~0!&I k12n
1
S 2K

b
t D I l 12m

1
S 2K

b
t D •••I kd2ndS 2K

b
t D I l d2mdS 2K

b
t D

2
1

N
e22tH0x~v,q!e2 iq•r l(

n,m
^sn~0!&eiq•rm3I k12n

1
S 2K

b
t D I m

1
S 2K

b
t D •••I kd2ndS 2K

b
t D I m

d
S 2K

b
t D

2
1

N
e22tH0x~v,q!e2 iq–rk(

n,m
^sm~0!&eiq•rn3I n

1
S 2K

b
t D I l 12m

1
S 2K

b
t D •••I n

d
S 2K

b
t D I l d2m

d
S 2K

b
t D

1
1

N2
e22tH0

2x2~v,q!(
n,m

eiq•rn1m3I k11n
1
S 2K

b
t D I l 11m

1
S 2K

b
t D •••I kd1n

d
S 2K

b
t D I l d1mdS 2K

b
t D

1
2

N
e2teivtH0x~v,q!e2 iq•r l(

n
^sn~0!&I k12n1S 2K

b
t D •••I kd2n

d
S 2K

b
t D

2
2

N2
e2teivtH0

2x2~v,q!e2 iq•r l(
n

eiq–rnI k11n
1
S 2K

b
t D •••I kd1n

d
S 2K

b
t D1

1

N2
H0

2x2~v,q!e2ivt2 iq•rk1 l,

~47!

respectively. Becauseni ~or mi) can take any real value in the region (2`,`), the summations forni and2 ni ~or for mi and
2mi) are equal. In addition, the summation indexesn andm can exchange each other. Then, the Eqs.~46! and ~47! can be
rewritten as

^sk~ t !&5e2t(
n

F ^sn~0!&2
1

N
H0x~v,q!eiq•rnG I k12n1S 2K

b
t D •••I kd2ndS 2K

b
t D1

1

N
H0x~v,q!eivt2 iq•rk, ~48!

^sk~ t !s l~ t !&5e22t(
n,m

F ^sn~0!sm~0!&1
1

N2
H0

2x2~v,q!e2 iq•rn2mG
3I k12n

1
S 2K

b
t D I l 12m

1
S 2K

b
t D •••I kd2ndS 2K

b
t D I l d2mdS 2K

b
t D2

1

N
e22tH0x~v,q!@e2 iq•rk1e2 iq•r l#

3(
n,m

^sn~0!&eiq•rmI k12n
1
S 2K

b
t D I m

1
S 2K

b
t D •••I kd2ndS 2K

b
t D I m

d
S 2K

b
t D

1
2

N
e2teivtH0x~v,q!e2 iq•r l(

n
@^sn~0!&2H0x~v,q!e2 iq–rn#3I k12n

1
S 2K

b
t D •••I kd2n

d
S 2K

b
t D

1
1

N2
H0

2x2~v,q!e12ivt2 iq•rk11 , ~49!

where^sn(0)& and ^sn(0)sm(0)& correspond to their initial values.
So far we have obtained the exact solutions of thed-dimensional kinetic Gaussian model in the periodic external fie

Letting H050, one can get

^sk1 . . . kd
~ t !&5e2t (

n1, . . . ,nd52`

`

^sn1 . . . nd
~0!&I k12n1S 2K

b
t D •••I kd2ndS 2K

b
t D , ~50!

^sk1 . . . kd
~ t !s l 1 . . . l d

~ t !&5e22t (
n1, . . . ,nd52`

`

(
m1, . . . ,md52`

`

^sn1 . . . nd
~0!sm1 . . . md

~0!&

3I k12n
1
S 2K

b
t D I l 12m

1
S 2K

b
t D •••I kd2ndS 2K

b
t D I l d2mdS 2K

b
t D . ~51!

Equations~50! and~51! are just the exact solutions of thed -dimensional kinetic Gaussian model in zero external field, wh
agree with the results obtained in our previous paper@20#.
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To understand the physical meaning of the Eqs.~50! and ~51!, it is interesting to investigate the long-time asympto
behavior of the local magnetization and the spin-pair-correlation function. By use of the asymptotic expansion expre
the first kind of imaginary argument Bessel function

I v~x!5
ex

A2px
(
n50

`
~2 !n~v,n!

~2x!n
1

e2x1(v1
1
2)p i

A2px
(
n50

`
~v,n!

~2x!n
,~2p/2,argx,3p/2!,uxu→`, ~52!

where

~v,n!5

GS 1

2
1v1nD

n!GS 1

2
1v2nD ,

one can get

^sk~ t !&;(
n

F ^sn~0!&2
1

N
H0x~v,q!eiq–rnG 1

td/2
e2t/t1

1

N
H0x~v,q!eivt2 iq–rk, ~53!

^sk~ t !s l~ t !&;(
n,m

F ^sn~0!sm~0!&1
1

N2
H0

2x2~v,q!e2 iq•rn2m2
1

N
H0x ~v,q!~e2 iq•rk2m1e2 iq•r l2m!^sn~0!&G 1

td
e22t/t

1
2

N
H0x~v,q!eivt2 iq•r l(

n
@^sn~0!&2H0x~v,q!e2 iq•rn#

1

td/2
e2t/t1

1

N2
H0

2x2~v,q!e2ivt2 iq•rk1 l, ~54!
pi
y

oi
l

e
o

za

n
s the

r

where

t5
1

122kd/b
, ~55!

is the relaxation time of the system. From Eqs.~53! and~54!
we can see that both the local magnetization and the s
pair-correlation function consist of two parts: one deca
with t, and the other vibrates witht. Since t increases to
infinity as the temperature approaches the static critical p
Tc (Kc5J/kbTc5b/2d), the decay term will occur critica
slowing down phenomenon.

We now turn on the response of the system to the tim
dependent external field. According to the general theory
linear response, the complex susceptibilityx(v,q) is ex-
pressed in terms of the equilibrium correlation of magneti
tion, namely@22#

x~v,q!5x~0,q!2
iv

kbTE0

`

^M ~2q,0!M ~q,t !&ee
2 ivtdt,

~56!

where

x~0,q!5
1

kbT
^M ~2q,0!M ~q,0!&e , ~57!

and^•••&e denotes the average over equilibrium distributio
Because
n-
s

nt

-
f

-

.

x~v,q!5
Nb

b
•

1

12
2K

b (
i 51

d

cos~qia!1 iv

, ~58!

Eqs.~56! and ~57!, therefore, mean that

^M ~2q,0!M ~q,t !&e5^M ~2q,0!M ~q,0!&eexpS 2
t

tq
D ,

~59!

and

^M ~2q,0!M ~q,0!&e5
N

bF12
1

b
K~q!G

5
N

bF12
2K

b (
i 51

d

cos~qia!G , ~60!

where

tq5
1

12
1

b
K~q…

5
1

12
2K

b (
i 51

d

cos~qia!

. ~61!

It is interesting to note that as the temperature approache
static critical pointTc , for q50 the static spatial correlation
diverges, while forqÞ0 it remains finite. However, whethe
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the singularity occurs or not, the dynamic responses stron
depend on the frequencyv and the wave vectorq of the
external field.

IV. CONCLUDING REMARKS

In this paper, the single-spin transition Glauber dynam
is used to investigate the kinetic Gaussian model in a p
odic external field. We have exactly obtained the local m
netization and equal-time pair-correlation function of t
d-dimensional isotropic hypercubic lattice Gaussian mo
by using Fourier’s transformation. The related critical d
namics characteristics of the system are discussed.

The master equation~1! with the transition probability
given by Eq.~11! conserves the important features of a c
operative system. When the system is in a time-depen
external field, the dynamical model itself cannot be exac
very high frequencies, it is only suitable for the case of lo
frequencies. In fact, the existence of a high-frequency fi
weakens stochastic motion and makes a thermal equilibr
state with canonical distribution impossible. Even so,
would not bring any impact for the characteristic behavior
the system at low frequencies. The present work has cle
shown that the local magnetization, the equal-time pair c
a

ev
ly

s
i-
-

l
-

-
nt
t

d
m
t
f
rly
r-

relation, and the dynamical responses of the system t
time-dependent external field strongly depend on the
quency and the wave vector of the external field, and wh
v→0 andq→0, they approach static results.

The Gaussian model is certainly an idealization, but it
interesting and simple enough to obtain some fundame
knowledge of dynamical process in cooperative syste
Furthermore, although it is an extension of Ising model,
Gaussian model is quite different from Ising model in t
properties of the phase transition@24#. It is well known that
in the equilibrium case the Gaussian model is exactly so
able on translational invariant lattices@25#. Meantime, as we
have done, the Gaussian model is also exactly solvabl
dynamical case@20#. Finally, we can anticipate that the k
netic Gaussian model will be a starting point to study t
kinetic s4 ~or f4) model.
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