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Solvable kinetic Gaussian model in an external field
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In this paper, the single-spin transition dynamics is used to investigate the kinetic Gaussian model in a
periodic external field. We first derive the fundamental dynamic equations, and then treat an isotropic
d-dimensional hypercubic lattice Gaussian spin system with Fourier's transformation method. We obtain
exactly the local magnetization and the equal-time pair-correlation function. The critical characteristics of the
dynamical relaxationry, the complex susceptibility(w,q), and the dynamical response are discussed. The
results show that the time evolution of the dynamical quantities and the dynamical responses of the system
strongly depend on the frequency and the wave vector of the external field.

PACS numbgs): 64.60.Ht, 75.10.Hk

I. INTRODUCTION periodic external field. In Sec. I, an isotropiedimensional
hypercubic lattice Gaussian spin model is treated by Fouri-
The purpose of this work is to investigate the dynamicaler's transformation. We exactly obtain the local magnetiza-
behavior of a cooperative spin system, particularly, the dytion and the equal-time spin-pair-correlation function. The
namical critical behavior. It is well known that a great critical characteristics of the dynamical relaxatiog, the
progress in the understanding of critical dynamics has beegomplex susceptibilityy(w,q), and the dynamical response
made, since Glaubdi] and Kawasak{2] completed their of the system to the time-dependent external field are inves-
pioneering work on the time-dependent Ising model. In thefigated. Finally, we end up the paper with concluding re-
past two decades much research has been devoted to a befigarks in Sec. IV.
understanding of dynamical behavior of various systems, and
many theoretical methods have been applied and developed Il. FUNDAMENTAL EQUATIONS
[3—-19. Among these studies, the main attention has been
focused on the discrete spin systems, such as the Ising modé}- Basic theory of the single-spin transition critical dynamics
and the Potts model, and a little on the continuous symmetry - A single-spin transition critical dynamics based on Glaub-
O(n) spin systems. Nevertheless, as far as our knowledggr's theory [1], applying to both discrete-spin and
goes, only a few analytical results were presented. In th@ontinuous-spin systems, was presented in our previous pa-
present work and the previous pap2@], we are focusing on per [20]. For the sake of application here we only give a
obtaining the exact analytical results. This is our main moti-symmary.
vation. _ _ o _ ~ Spins system with Hamiltoniar({c;}), whereo; is the
The Gaussian model is a variation of the Ising model. It isspin of sitei and can take discrete values or continuous val-
a uniaxial continuous spin model that shows different statiq,es interacts with a large heat bath with temperafurhe
critical behavior from the Ising model. Although its static neat path gives rise to spontaneous transition of spins via
critical properties have been investigated clearly, little attenaychange of the energy. The probability of transition of the
tion has been paid to dynamical critical behavior. This is alsqp, spin per unit time from one value; to another possible
e e "lue s denoted b 7). Under he assumton o
’ single-spin transition, the probability distribution function

we have obtained dynamical critical exponertl/v=2 at _ ; g , )
the critical pointk .= b/2d based on rigorous analytical deri- P({oi},t) of the system, being in the configuration

vation (oq,0,,---,0n) at timet, is governed by the master equa-
To our knowledge, only the kinetic Ising model with tion
time-dependent external field has been investigated in detail d

[21,22. The present work is attempting to investigate further aP({UJ},tFE E [—Wi(oi—0i)P{a;},1)
the dynamic behavior of the kinetic Gaussian model with b0

time-dependent external field. This paper is organized as fol-
lows: In Sec. I, we first summarize the basic theory of the

single-spin transition critical dynamics, and then derive the

fundamental equations of the kinetic Gaussian model in Avhere the spin transition probability satisfies the following
restrictive conditions:

(1) Ergodicity:

+Wi(oi—o)P{oj.it0oi,0], (D
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(2) Positivity:

(3) Normalization:
Vo 2 Wjoj—ay)=1; (4)
aj
(4) Detailed balance:
Vo o W,(0j—0)) Ped 01, ... 0), .. 0N
0j,0] = P . ,
Wi(oj—0aj) edT1, -0, - ,ON)
6)
in which

1
Ped{o})=Zexil = BH({oD]. Z=2 exil~BH({o}],
(6)

where P is the equilibrium Boltzmann distribution func-

tion, Z the partition function an@{({s}) the Hamiltonian of
the system.
By use of both the master Eq1l) and the normalized

condition (4), the time-evolving equations of the local mag-
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(11)

Wi(O'i—>(}i): Qiex%_,BHi(a—i ’<2> O-J) !
i g

is well chosen, wher®; is the coefficient determined by the
normalized conditior{4). Equation(11) means that the tran-

sition probability froma; to (}j only depends on the heat
Boltzmann factor of the neighboring spins. If the system is in
a periodic low-frequency external field, E¢L) is still a
possible choice.

B. The model and the fundamental equations

To study further the dynamical behavior of the Gaussian
spins system near the critical point, we put the system in a
periodic low-frequency external field which may be regarded
as an electromagnetic way22]. The reduced Hamiltonian
of the system under consideration is

_ﬁH:<E> KijUin+2 hi(t)o-i’ (12)
ij !
where
1 K. — ‘Jij h . Hi(t) _
g o KT i(t)_k‘T_k Texp(lwt iaxi),
(13

netization and the equal-time spin-pair-correlation function

can be expressed as, respectively

the first sum goes over all nearest-neighbor pairs of lattice
and the second over all sites. Unlike Ising spin model, the

d ~ ~ Gaussian model have two extensid@8]: first, the spin can
atlodt)= _<Uk(t)>+{§j} ;k Uka(UkHUk)) take any real value in the range of o, +); second, to
prevent all spins from tending to infinity, the probability of
XP({oj},1), (7)  finding a given spin betweem; and o;+do; is assumed to
be the Gaussian-type distribution
d
FilodOo()==2(a( o)+ 2 | ok(t) b b
{‘Tj} f(O’i)dU'i: - _exp — _O'iz dO'i ’ (14)
2 2
X E aWi(a—ay) | +oy(t) whereb is a distribution constant independent of tempera-
| ture.
A . In terms of those mentioned above, we can derive the
X[ > o Wi o— ak)> P({oj},t), (8  fundamental equations of the kinetic Gaussian model in the
7 external field. Following Eq.(11), we choose the spin-
transition probability as
where
W (0 — O —ex K:: ' oo . +h o
<O-k(t)>:{2} (Tk(t)P({0'|},t), 9) i(ogj—0j)= Q, F{% ii+wOiTi+wT o
)
1 A
= 5-exd Ejoi], (15
(ot)a(t)= 2 s (P{oht). (10 i
k where
Although the evolution starts with a certain initial state at
t=0, the system must be relaxed toward the final objective, E = K. . 4h 16
which is an equilibrium state characterized b, ! % Li+wOTw T 18

=(1/Z)exd —BH({o})] in the absence of time-dependent

external field, via interaction with heat bath. In addition, it is ahdX,, means the summation over nearest neighbors. As the
usually considered that the transition probabilities of the inSpin variable takes continuous values, the summation for
dividual spins depend merely on the momentary values o$pin turns into the integration

the neighboring spins as well as the influence of the heat .

bath. So, even if the transition probability cannot be derived E _>f f(o)da,
exactly by means of microscope, the following form: o —o

(17)
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then the normalized factd®; can be determined as

E2
Q=2 exp(Eia-i>=f exeri&of(&i)d&sexp(j),

Ti

(18)

PRE 61

and

K, nearest-neighbor-pair,

and another useful combination formula can also be written

as

> a’iWi(Ui—NATi):f aiWi(oi—ay)f(0)do;=E; /b.

T

(19
Substituting Eq(19) into the time-evolving Eqs.7),(8), one

gets

d _ 1 1
a(‘fi(t»— —(oi(t)+ b EVV: Kiisw(oisw(t))+ Bhi(t),

(20
d
&(Ui(t)(fj(t»: —2(ai(t) (1))
1
5 2 K@D oy u(D)
1
TKiitw{Tipw(t)oj(1))] +B[hi(t)
X(aj(t))+h;(t)(oi(1))]. (21

Equationg20) and(21) are the fundamental equations of the

kinetic Gaussian model in the external field.

IIl. EXACT SOLUTION

For ad-dimensional isotropic hypercubic lattice, the dy-
namic equations of the local magnetizati@®) and the spin-

pair-correlation functior(21) can be rewritten as

d B 1
qrlaiD)=~(ai(0)+ 5 20 K(ri=r)(oy(D))

BHo

4 b eiwtfiqwi' (22)

d 1
a<0'i(t)0'j(t)>: —2(oi(t)oj(t)) + b

El K(ri—r)

><<cr.<t>a,-<t>>+2I K(ri—r))

X{ai(t)o(t)) +BTH°[<ai(t)>eiwt—iq-n
+(o(t))ye'eria, (23)
where
g=(00z2, ... Gd), F=(Xy,X2, ... Xq),
i=(ig,ip, .. gy J=01.d2s - i) -, (29

Kri=ry)= 0, others. (25
Introducing Fourier’s transformation
(M(@",0)= 2 (ai(0)e'T"", (26)

<G<q',q”,t>>=;<w(t)o|<t)>e“*’-fk+“*”'f', 27)

which satisfy
1 i(q—q’).r
NZeq N=5, 41, (28
1 )
N 2 e'q'(rl_rk)zﬁlyk, (29
q
we have
da Lo D oy NHOB
giiM(@’ )+ 1= K@) (M(@", 1) = — = g g€,
(30

oo
gilG@na", )+ | 1= K@) | +{ 1- £ K(g")

NH
xX(G(q',q",t))= bOB

[<M(q,,t)>5q'q//
+(M(Q",1)) 8,4 16", (31)

where

K(@)=> K(r,—r)eiati=n)
d d
=K21 (e‘qia‘+e“qia)=2KZl cogq;a), (32)
K(0)=2Kd, (33

anda is the lattice constanyy; is theith component of the
wave vectorg, andd is the spatial dimensionality.

First we solve Eq(30). Obviously, it is a first-order linear
inhomogeneous differential equation with the canonical form

dy(t
DY pym=au),

and its general solution is

y(t)=

1 t
) ,u(to)Y(to)+ftoﬂ(i)Q(@d&},

where
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,u(t)=ex;{JP(t)dt} Tq,zl 1/;K — = 1d (35
~(W)K{a) 1-(2K/b)Y, cogq/a)

Applying it to Eg. (30), one can get the following exact

solution: and
t . Ng 1
(M(a" D)y=exg ——|| (M(a',0) X(@.g7)=3" a (3
Ty 1-(2K/b) >, cogq/a)+im
=1
NHoB t & . .
+T5q'q'f exp —+iwé|dé are the wave-number-dependent relaxation time and the
0 To' frequency- and wave-number-dependent complex suscepti-
¢ bility, respectively.
_ "y , ) - From expressiori35) we can see that,, is finite for g’
[(M(a",0) =Hox(.d")6qq ]exp( Tq,) #0 as the temperature approaches the critical pbingK
) ot =J/kgT.=b/2d), while it becomes to infinity foq’=0.
tHox(@,9")6qq €, (349 Substituting the solutiori34) of the local magnetization
into Eqg. (31), the time evolution equation of the spin-pair-
where correlation can be rewritten as
|
d ’ 4 1 ! l 4 ! n
—(G(a".q" ) +|| 1-~K(a) | +|{ 1= =K(q") | (G(q".q".1))
dt b b
NHo3 , , t NHo8 .,
= [<M(q ,0)>_H0X(w,q )5q,q’]5q,q”ex ——tlot|+ [<M(q !O)>
b Ty b
" t ; NHOB ’ " 2iwt
_Ho)(((l),q )5q‘qrr]5q'qrex ——t+lwt |+ b [Ho)((w,q )+H0)((w,q )]5q’qr5q‘que . (37)
Tq//

Equation(37) is also a first-order linear inhomogeneous differential equation. One can give its general solution

t t NHoB t &
<G(q’1q”1t)>:ex% ____) <G(q’vq”10)>+ b [<M(qrvo)>_HOX(qu,)éq,q’](sq,q”J ex;{——klwf dg
Tqr Tqrr 0 Tqrr
NH t NH
LM (.0 Hox(0,0") 13 foexp(TiﬂLiwf d+ P [Hox(,q)
q/

+ Hox(w,qﬂ)]éq’qr 5q’qrr>< f;ex;{i-i-i-i-lef) dg]

’Tqr ’Tqr/

:[<G(q,vq”!O)>_<M(q,10)>HOX(qu”) 6q,q”_<M(q,,10)>HOX(w!q,)5q,q’

+[<M(q,ao)>_HOX(qu’)5q,q’]HOX(quN) 5q,q”

t t
+ HSX(wiq’)X(waq”)aqu' q'qﬂ]ex% e

Tqr an
t
Xexp — —+iwt
TCI'

+Hix(0,0") x(@,9") g Sq € " (39)

t
+[<M(q”,0)>—Hox(w,q”)6q,q~]Hox(w,q’)6q,q/eer< - —+iwt)

Tq "

To make the solution an explicit one, we note that the factore#pf) can rewritten as

t 2K &
ex;{ —T—q)zexr{—(l—v 2’1 cos{qia))t

2K elfid4 e‘iqia)

d
At n
=e Hexr{ b t 2

in which
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2K eldid4g~idia
eXF{TtT)

is just the generating function for the first-kind of imaginary argument Bessel function

exr{g()\—l—)\_l)}: >N (x), (39)

wherel ,(x) is the first kind of imaginary argument Bessel function. Hence

exp(—%) tﬂlnlE elai '.(2 ) T[“IE eldixn ] ,(2—t> tE e'qrnlnl(zb )---lnd<%Kt)
(40

for convenience, where the summations fgr. . . ,ng from — to « are denoted by ,. Then Eqgs(34) and(38) can be
rewritten as

2K 2K .
(M(@',1)=[(M(a",0)) ~ Hox(w,d') dgq ] x e € (b )~~'lnd(?t)+Hox<w,q')5q,qfe'w& (41

|

<G(q,1q”1t)>:e_2t[<G(q,1q/’10)>_<M(q/10)>H0X(w1q”)6q,q”_<M(q”10)>HOX(qu/)5q q’

2 ' " E iq ry+Fig” oy 2K 2K
+Hox(w,q9") x(w,q )5q,q,5q’q,,]><nvm e Inl Tt Iml Ft

N

N

(5

. - K K
+e_telwt[<M(q,iO)>_HOX(qul)5q,q’]HOX(w!q,,)5q,q”x; elq ~rn| (F ) : (F )
K K )

B!

te elwt[<M(qH O)) Hox(o,q" )5qq”]HOX(w q )5qq’><2 eld" | (T ) : (
+Hix(0,0") x(0,9") g, 8q € " (42)

Taking the inverse Fourier transformation

1 ’ —iq’-r
(o)== (M(a" e @, (43)
ql
1 ’ —iq"-r,—iq"-r
(oD ()= 5 2 (G(a’a"pye i, (44)
qI’qII
and using the following relation:
1 | (ri— r)
NE Gi=4g,, (45
q

the local magnetization and the pair correlation of dhdimensional hypercubic system can be written as

&l

1 _
+ g Hox(@,)et 19, (46)

t 2K 2K 1 la-r 2K
<Uk(t)>:e ; <0'n(0)>|k1—n1 Ft "lkd—nd Tt —NHOX(Q),Q)eq nIkl-%—n1 Tt "'lkd+nd

and
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. 2K 2K 2K 2K
(o (Hay(t))=e ;ﬂ (@000l | 5t |l | pt ] Mg 5t lg-m| -t

(b ) (b ) "'kd"d(%t)'mu%t)
(252
el

2 —taiot —ig-r 2K 2K
e e Hox(@,0e !N (o0l n,| t]Tiggn |

e 2Hox(w,q)e v f'E (0(0))€'F X1y _

1
~NE PHox(w,@e S (0 (0)e I,

1 .
+ me‘ZtHsz(w,q);“ e'dfnemxly 1n (— )

b

2 o . 2K 2K 1 Cotia.
_me Ielth%XZ(w,q)e iq r|§n: gid rnlkl*”l(_t)“'lkd*“d(Ft +@H§X2(w,q)e2' GRS

(47)
respectively. Becausg (or m;) can take any real value in the region ¢,«), the summations fom; and — n; (or for m; and

—m;) are equal. In addition, the summation indexeandm can exchange each other. Then, the E46) and (47) can be
rewritten as

B 1 . 2K 2K | 1 o
(o) =62 [(04(0)~ Hox(w,q)e %" lkl_nl(gt)--~|kd_nd(7t)+NHox<w,q>e'wt (49

1 ,
<Uk(t)0|(t)>:e_2t§ <0'n(0)0'm(0)>+mH%X2(w,q)e_'Q'rn—ml

2K 2K 2K 2K |\ 1, e

Xlg=n | 5t hy-m | 5t Tegng| 5t hg-mdl 5t~ & Hox(@,a)fe " temd ]
2 iqr 2K 2K 2K 2K
Xn’m <0’n(0)>e mlkl_nl Tt |m1 Ft ”.Ikd_nd Tt Imd Ft

2 —talot —ig-r —ig-r 2K 2K
+—e e “"Hox(w,q)e 9" [(04(0))—Hox(w,q)e I X T, | —t| 1 |t
N n 1"\ b d "4\ b

1 .
LI GUIES (49)

where(o,(0)) and{o,(0)o,(0)) correspond to their initial values.
So far we have obtained the exact solutions of dhdimensional kinetic Gaussian model in the periodic external field.
Letting Hy=0, one can get

0

2K 2K
<0'k1...kd(t)>:e7t 2 <0'nl . .nd(o)>| kl_”l<Tt) o 'Ikd—nd(Ft)u (50)
Ny .. ng=—o
(o, Do, ()y=e2 > 2 (o n(0)om  m(0))
Np .. Ng=—% my .. mg=—c
2K 2K 2K 2K
><|kl_n1 Tt Ill_ml Ft '..Ikd_nd Ft ||d_md Ft . (51

Equationg50) and(51) are just the exact solutions of tide-dimensional kinetic Gaussian model in zero external field, which
agree with the results obtained in our previous pdgér.
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To understand the physical meaning of the E&) and (51), it is interesting to investigate the long-time asymptotic
behavior of the local magnetization and the spin-pair-correlation function. By use of the asymptotic expansion expression of
the first kind of imaginary argument Bessel function

[

1
X % _\n v,n e—x+(v+ z)q-ri v,n
I, (X)= \/mnzo( ()2>(<)” )+ S HZO EZX)z,(—77/2<argx<37-r/2),|x|—>oo, (52
where
r 1
§+V+n
(v,n)= :
] — —
n.F(2+v n)
one can get
1 ig-r 1 —t/r 1 iot—ig-r
(o)~ 2 [{on(0) ~ GHox(@,q)e ™| e+ GHox(w,g)e 1 (53

1 2.2 —iq-r 1 —ig-r —ig-r 1 —2t/T
<crk(t)<f|(t)>~§1 <Un(0)0m(o)>+mH0X (@,q)e" "% n-m— SHox (@,q)(e” "% k-m+e 9 =m)(0y(0)) a®

2 iot—iq-r —iqg-r 1 —t/T 1 2.2 2iot—iq-r

+ g Hox(@.@)e 7191 [(04(0)—Hox(w, e 1] e+ S Hix (w,q)e e, (54)
|
where NB 1

X(wa):T d ’ (58)

2K )

- 1 1_TZ cogg;a)tiw
"~ 1-2kdib’ 59 -

Egs.(56) and (57), therefore, mean that

is the relaxation time of the system. From E£3) and(54)
we can see that both the local magnetization and the spin- t
pair-correlation function consist of two parts: one decays (M(—a,0M(q,t))e=(M(—9,00M(q,0))ceX _T_)'
with t, and the other vibrates with Since 7 increases to 4 (59)
infinity as the temperature approaches the static critical point
Te (Kc=J/kgT.=b/2d), the decay term will occur critical and
slowing down phenomenon.

We now turn on the response of the system to the time-
dependent external field. According to the general theory of ~ (M(=a,00M(q,0))e=
linear response, the complex susceptibiljyw,q) is ex- b[l—BK(q)}
pressed in terms of the equilibrium correlation of magnetiza-

tion, namely[22] N
= d ’ (60)
lo = i b{l—z—KE cogq;a)
X(w,q)=x(0,q)—ﬁf (M(—0g,00M(q,t))ee”'“tdt, b & '
sl Jo
(56) where
where 1 1
(] = ZKi : (61)
1 1--K(@ 1-— > cogqa)
X(00)= (M(~a.0M (G0, (57) b b = “%

It is interesting to note that as the temperature approaches the
and(- - - ). denotes the average over equilibrium distribution.static critical pointT., for q=0 the static spatial correlation
Because diverges, while folg+ 0 it remains finite. However, whether
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the singularity occurs or not, the dynamic responses stronglyelation, and the dynamical responses of the system to a
depend on the frequency and the wave vectoq of the time-dependent external field strongly depend on the fre-
external field. guency and the wave vector of the external field, and when
w—0 andg—0, they approach static results.
IV. CONCLUDING REMARKS The Gaussian model is certainly an idealization, but it is
) ) ) - ~ interesting and simple enough to obtain some fundamental
In this paper, the single-spin transition Glauber dynamicnowledge of dynamical process in cooperative systems.
is used to investigate the kinetic Gaussian model in a pe“Furthermore, although it is an extension of Ising model, the
odic external field. We have exactly obtained the local maggayssian model is quite different from Ising model in the
netization and equal-time pair-correlation function of the roperties of the phase transitig@d]. It is well known that
d-dimensional isotropic hypercubic lattice Gaussian mode|, the equilibrium case the Gaussian model is exactly solv-
by using Fourier's transformation. The related critical dy-ap|e on translational invariant latticEg5]. Meantime, as we
namics characteristics of the system are discussed.  haye done, the Gaussian model is also exactly solvable in
The master equatiofil) with the transition probability gynamical cas¢20]. Finally, we can anticipate that the ki-

given by Eq.(11) conserves the important features of a co-petic Gaussian model will be a starting point to study the
operative system. When the system is in a time-dependepfnetic s* (or ¢*) model.

external field, the dynamical model itself cannot be exact at

very high frequencies, it is only suitable for the case of low

frequencies. In fapt, the_ existence of a high-frequenqy figld ACKNOWLEDGMENTS

weakens stochastic motion and makes a thermal equilibrium

state with canonical distribution impossible. Even so, it This work was supported by the National Basic Research
would not bring any impact for the characteristic behavior ofProject “Nonlinear Science” and the National Natural Sci-
the system at low frequencies. The present work has clearlgnce Foundation of China under Grant No. 19775008. J.Y.Z.
shown that the local magnetization, the equal-time pair corthanks Dr. Z. Gao for his valuable discussions.

[1] R. J. Glauber, J. Math. Phy4, 294 (1963. [12] J. Zhou and Z. R. Yang, Phys. Rev.3, 9423(1989; Z. R.
[2] K. Kawasaki, Phys. Revl45 224 (1966. Yang, 46, 11 578(1992.
[3] K. Kawasaki, inPhase Transition and Critical Phenomena [13] M. D. Lacasse, J. Vinals, and M. Grant, Phys. Revl35646
edited by C. Domb and M. S. GredAcademic, New York, (1993.
1972, Vol. 2. [14] B. C. S. Grandi and W. Figueiredo, Phys. Rev5& 4722
[4] S. K. Ma, Modern Theory of Critical Phenomen®enjamin, (1996.
New York, 1976. [15] J. Rogiers and J. O. Indeleu, Phys. Rev4B 6998(1990.
[5] P. C. Hohenberg and B. I. Halperin, Rev. Mod. PH8.435  [16] J. Wang, Phys. Rev. B7, 869(1993.
(1977. [17] P. Q. Tong, Phys. Rev. B6, 1371(1997.
[6] R. J. Myerson, Phys. Rev. B4, 4136(1976. [18] F. G. Wang and C. K. Hu, Phys. Rev.36, 2310(1997.
[7] B. 1. Halperin, P. C. Hohenberg, and S. K. Ma, Phys. Rev.[19] A. Vespignani, S. Zapperi, and V. Loreto, J. Stat. PI83.47
Lett. 29, 1548(1972; Phys. Rev. BLO, 139(1974. (1997.

[8] Y. Achiam and J. M. Kosterlitz, Phys. Rev. Le#tl, 128 [20] J. Y. Zhu and Z. R. Yang, Phys. Rev.39, 1551(1999.
(1978; Y. Achiam, J. Phys. AL3, 1825(1980; Phys. Rev. B [21] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E

31, 4732(1985; 32, 1796(1985; 33, 7762(1986. 57, 6512(1998.

[9] J. O. Indekeu, A. L. Stella, and J. Rogiers, Phys. Re82B  [22] M. Suzuki and R. Kubo, J. Phys. Soc. Jj24, 51 (1968.
7333(1985. [23] T. H. Berlin and M. Kac, Phys. Re86, 821 (1952.

[10] E. J. Lage, J. Phys. A8, 2289(1985; 18, 2411(1985; Phys.  [24] S. Li and Z. R. Yang, Phys. Rev. &5, 6656(1997.
Lett. A 127, 9 (1988. [25] H. E. Stanley,Introduction to Phase Transition and Critical

[11] D. Kandel, Phys. Rev. B8, 486(1988. PhenomendOxford University Press, Oxford, 1983



